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ABSTRACT High-throughput shotgun sequence data make it possible in principle to accurately estimate population genetic
parameters without confounding by SNP ascertainment bias. One such statistic of interest is the proportion of heterozygous sites
within an individual’s genome, which is informative about inbreeding and effective population size. However, in many cases, the
available sequence data of an individual are limited to low coverage, preventing the confident calling of genotypes necessary to directly
count the proportion of heterozygous sites. Here, we present a method for estimating an individual’s genome-wide rate of hetero-
zygosity from low-coverage sequence data, without an intermediate step that calls genotypes. Our method jointly learns the shared
allele distribution between the individual and a panel of other individuals, together with the sequencing error distributions and the
reference bias. We show our method works well, first, by its performance on simulated sequence data and, second, on real sequence
data where we obtain estimates using low-coverage data consistent with those from higher coverage. We apply our method to obtain
estimates of the rate of heterozygosity for 11 humans from diverse worldwide populations and through this analysis reveal the complex
dependency of local sequencing coverage on the true underlying heterozygosity, which complicates the estimation of heterozygosity
from sequence data. We show how we can use filters to correct for the confounding arising from sequencing depth. We find in
practice that ratios of heterozygosity are more interpretable than absolute estimates and show that we obtain excellent conformity of
ratios of heterozygosity with previous estimates from higher-coverage data.

HETEROZYGOSITY, or the fraction of nucleotides within
an individual that differ between the chromosomes they

inherit from their parents, is a crucial number for under-
standing genetic variation. Estimating this simple statistic
from any type of sequence data is confounded by sequencing
errors, mapping errors, and imperfect power for detecting
polymorphisms. Obtaining an unbiased estimate is especially
difficult for ancient genomes, where the sequences have
a higher error rate, or in cases of low-coverage sequence
data, where there is low power to detect heterozygous sites,
or for hybrid capture where there may be additional biases
due to the oligonucleotides used for fishing out sequences of
interest.

Several methods for estimating individual heterozygosity
have been proposed (Johnson and Slatkin 2006; Hellmann
et al. 2008; Lynch 2008; Jiang et al. 2009; Haubold et al.

2010). For an overview of these methods see Haubold et al.
(2010). Haubold et al. (2010) describe mlRho, an imple-
mentation of a method that jointly infers u, the scaled mu-
tation rate, and r, the scaled recombination rate for
a shotgun-sequenced genome. However, they examined per-
formance of their method at 10X coverage and a small se-
quence error rate of 4 3 1024, which is about four times
lower than encountered currently in real data (Shendure
and Ji 2008). We developed a method that estimates the
heterozygosity for an individual of interest by leveraging the
genome-wide joint information across sequence reads from
a panel of individuals. Unlike previous methods that sto-
chastically learn population allele frequencies (and thereby
inform estimates of heterozygosity) in individuals from the
same population (Kim et al. 2011; Li 2011), our model does
not require any representative individuals from the same
population for inference. The advantage of leveraging the
panel of individuals in our method is that it enables learning
of the empirical distribution of alleles at heterozygous and
homozygous positions, a distribution that encapsulates se-
quencing errors and the non-Bernoulli sampling of each
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allele at a heterozygous SNP. This allows one to disentangle
the rate of heterozygosity from sequencing errors and other
biases and does not require explicit modeling of these plat-
form-, batch-, and genome-specific (frequently unknown
and unestimatable) error processes. As a result of including
the allele or genotype information at other individuals, our
method gains robustness to any unknown error sources that
may also be present within the data. Furthermore, our
model allows for any relationship between the target indi-
vidual and the panel and any relationship among the panel
individuals, so long as the panel individuals share genetic
polymorphisms with the target individual. The estimates
from our method are not affected by choice of panel or
cryptic relatedness among individuals.

We use an expectation–maximization (EM) algorithm to
estimate the most likely distribution of counts across the
unknown underlying genotypic states, from which we obtain
an estimate of the proportion of loci that are heterozygous in
the target individual. An advantage of this method is that it
returns an unbiased and accurate estimate of heterozygosity
even when the individual has low sequence coverage. Our
method learns the distribution of alleles directly from the
sequence read data and does not require modeling demo-
graphic relationships among the individuals or genotype
calls from the sequence reads. We validate our EM method
on 1 GB of simulated sequence data of 2X, 3X, 4X, 5X, 10X,
20X and 30X coverage and find that our method performs
well at estimating the true heterozygosity even when the
sequence error rate is extreme and mean coverage is low.
As an empirical validation of the ability of our method to
perform well on low-coverage data sets, we test our method
on real high-coverage (30X) sequencing data, which we sub-
sample to lower coverage, and verify that our estimates are
consistent. In particular, we show that applying our method
to a lower-coverage subsampling provides the same estimates
of heterozygosity as those obtained on higher-coverage data,
which are concordant with estimates of heterozygosity from
other methods. We also show that our estimates do not de-
pend on the choice of reference panel composition and that
our estimates are consistent even when using unrelated pop-
ulation panels or relatives.

We apply our method to obtain estimates of heterozy-
gosity for 11 individuals from many worldwide human
populations, from Meyer et al. (2012). Our finding under-
scores the need to compare ratios of heterozygosity across
fixed genomic regions to infer the relative rates of diversity
among individuals.

Materials and Methods

We apply our method to read data at sites with a target mi-
nimum coverage (for example, $5X coverage) for the se-
quenced diploid individual of interest, aligned to some
reference genome of known sequence. We also use sequence
read data from n other individuals likewise aligned to the
reference.

Let a be the unknown diploid genotype of our target in-
dividual at some position in the genome and c be the aligned
reference allele. Then the allele distribution in other indi-
viduals will depend on g = (a, c). Let x = (x1, x2, . . . , xn) be
the vector of alleles generated by taking one randomly sam-
pled read from each of the n individuals. Let w be the ob-
served alleles from the reads for our individual. Both w and
x are observed quantities for a given position in the genome
for our individual, and we are interested in modeling the
joint probability of w, x as the product of the marginal prob-
abilities conditional on g.

We assume conditional independence of w, x on the true
unobserved genotype g. This assumption holds if the allele-
frequency spectrum of the panel of individuals depends only
on the true underlying genotypic state of our individual and
not on the allele counts we observe, and likewise the allele
count distribution depends only on the true underlying ge-
notypic state and not on the alleles observed in the other
individuals. From this conditional independence property,
we then derive

Pðw; x j gÞ ¼ Pðw j gÞ P ðx j gÞ (1)

Pðw; xÞ ¼
X
g

PðgÞ P ðw; x j gÞ (2)

¼
X
g

Pðw j gÞ P ðx j gÞ P ðgÞ (3)

Pðw; x; gÞ ¼ Pðw j gÞ P ðx j gÞ P ðgÞ; (4)

which will later provide the leverage to infer the most likely
values for the above probabilities, including P(g), which
gives us the genomic rate of heterozygosity.

For every site that has sufficient coverage in our in-
dividual and for which we have complete information of the
panel, we add this site to the corresponding bin of observed
alleles w and panel x. This full matrix would be inconve-
niently large, so to simplify the data matrix of counts, we
polarize our allele counts with respect to the reference,
restricting to biallelic SNPs, which constitute the majority
of sites. We denote the reference allele as 0 and allow only
a single other variant per site, summarizing the observed
alleles from the reads by the number of nonreference alleles.
Thus, we denote genotypes as g 2 {0, 1, 2}, which we refer
to as the homozygous ancestral, heterozygous, and homo-
zygous derived states, respectively. If, for example, we con-
sider only sites with a coverage of 4, then w 2 {(4, 0), (3, 1),
(2, 2), (1, 3), (0, 4)}. We can also easily represent x as
a vector of 0’s and 1’s, referring to the reference or the
nonreference allele present in the randomly sampled reads;
for example, x = (0, 1, 1, 0, 1), where the length of x is
determined by the number of individuals we sample.

We create a count matrix N of dimension kwk 3 kxk,
corresponding to the number of observed sites with each
particular combination of w and x. The counts of the
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numbers of loci where the individual is w and the panel of
individuals comprises the alleles x are represented by the
corresponding row and column entries in the matrix N.

From the matrix N we estimate the true values of P(g),
P(w|g), and P(x|g), using the EM algorithm. Let Yobs be the
observed counts of alleles in the matrix Nw,x. Let Ymis be
Nw,x,g, the missing or unobserved counts of the alleles with
the true parameter state g. Then the likelihood of the data is

L ¼
X
w;x

Nw;xlog  Pðw; xÞ: (5)

If the hidden variable, g, corresponding to the true underly-
ing genotypic state were observed, the log-likelihood would
be

L9 ¼
X
w;x;g

Nw;x;g log  Pðw; x; gÞ: (6)

But this would require fitting kgk different parameters per
observed data point (i.e., count entry of Nw,x). This would
require fitting three times as many parameters as there are
data points. However, by relying on our conditional indepen-
dence from Equation 4 above we can reduce the number of
parameters to be fitted from the data.

By EM theory, the Q function QðP; P̂Þ is given by

Q
�
P; P̂

�
¼ EpostL9

�
P̂
�

¼ P
w;x;g

N̂w;x;glog  P̂ðw; x; gÞ;

where N̂w;x;g is the expected value of Nw,x,g, which in our
case derives from the multinomial distribution, under the
posterior distribution calculated with the old parameters P.

The estimates for P̂ that maximize Q, also derived from
the maximum-likelihood estimates (MLEs) for the multino-
mial distribution, are

P̂ðwjgÞ ¼
P

xN̂w;x;gP
w;xN̂w;x;g

P̂ðxjgÞ ¼
P

wN̂w;x;gP
w;xN̂w;x;g

P̂ðgÞ ¼
P

w;xN̂w;x;g

N
:

Further, by Bayes’ theorem this expands to

N̂w;x;g ¼ Nw;x � P̂ðw;x;gÞ
P̂ðw;xÞ

¼ Nw;x � P̂ðw j gÞP̂ðx j gÞP̂ðgÞP
z
P̂ðw j gÞP̂ðx j gÞP̂ðgÞ:

By basic EM theory these reestimated values of P̂ will gener-
ate a nondecreasing sequence of values for the log-likelihood
L. Finally, we obtain the parameter of interest P̂ðg ¼ 1Þ after
convergence.

Implementation

In practice, without constraining the parameters P̂ðwjgÞ we
reach local but not consistently global likelihood maxima,
which do not necessarily correspond to the genotypic state
parameters we wish to obtain. To improve the ability of the
EM to achieve maxima of genotypic states, we fit b-binomial
distributions (effectively an overdispersed binomial distribu-
tion) to the probabilities of the number of nonreference
alleles P(w|g) for each possible genotypic state g. Under this
constraint, as well as the choice of reasonable starting
parameters for the EM initialization, in practice, the EM
consistently converges to a local maximum corresponding
to the homozygous ancestral, heterozygous, and homozy-
gous derived genotypic states.

Like those for the Beta-distribution, the MLEs for the
Beta-binomial distribution do not have a closed form,
although they can be found using direct numerical optimi-
zation (such as a fixed-point iteration or a Newton–Raphson
iteration). However, instead, we estimate the two parameters

Figure 1 True vs. estimated
rates of heterozygosity for 100
simulated read data sets. (A) Each
data set has been downsampled
to different coverage levels,
denoted by symbol color and
shape. The red line corresponds
to true = estimated or perfect es-
timation of heterozygosity. (B)
Run-by-run differences between
true and estimated heterozygosity
rates, stratified by downsampling
coverage. The y-axis shows the
percentage of error from the true
value of heterozygosity.
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(a, b), using method-of-moments (MOM) estimators for the
Beta-binomial, by setting

â ¼
�
n2 x2 s2=x

�
x

ðs2=x þ x=n2 1Þn

b̂ ¼
�
n2 x2 s2=x

�ðn2 xÞ
ðs2=x þ x=n2 1Þn :

In the case of underdispersed data, it is possible to obtain
MOM estimates that are invalid. Although unlikely to occur in
the read data, for this contingency, we instead fit a binomial
distribution to the data.

There are several challenges in implementing the EM for
our problem. The first is that, as with all likelihood
calculations, our probabilities approach very small numbers.
To avoid numerical error due to underflow of small like-
lihoods and parameter estimates, we implement the EM,
storing all probabilities and likelihoods in the log form.

When any of the parameters we are interested in estimat-
ing approach 0, then the probabilities become numerically
unstable and may have underflow issues (or in log space,
overflow issues). To avoid this situation, we add a “prior” e to
the likelihood calculation, which adds a small count value in
the step calculating the parameters to avoid probabilities
reaching 0. This is a standard approach using “pseudo-
counts” for an EM, which also avoids an ill-defined likeli-
hood calculation involving px when both p / 0 and x / 0.

In implementing these pseudocounts, we calculate the
posterior

L9 ¼ N̂p; x; z logðPðp; x; zÞÞ þ L9

rather than the maximum-likelihood estimation; hence, we
obtain a maximum a posteriori (MAP) estimate, which is
a Bayesian method that incorporates a prior over the distri-
bution to be estimated (in this case, a small uniform prior).
We choose a small prior (less than in total counting one site
across all possible matrices) that does not affect our esti-
mates. In general, our estimates are robust to choice of this
prior, within a range examined of 1 3 10210 to 1 3 10250,
and we continue to refer to our method as an EM imple-
mentation although in fact we use a non-MLE method. In
effect, our equations for each step remain the same, except
that in the M-step of the EM (where we estimate the param-
eters) we instead estimate the MAP using the prior. Specif-
ically, we estimate

Posterior ¼
X
i;j

�
Ni;j � log

�X
z

Pi;j;z

�
þ e �

X
z

log
�
Pi;j;z

��
:

In practice, we set e to 1 3 10220, which does not alter
estimates of the probabilities while preventing numerical
instability issues.

Finally, likelihood maximization occurs on an arbitrary
base, so to avoid numerical issues due to any remaining
underflow of the likelihood calculation, we compute a factor
F at the start of the EM. For each iteration, we compute the
likelihood of the data minus this constant factor, which is
a standard practice and does not affect the computation of
the maximum. This is equivalent to calculating the log odds

L ¼
�P

i; j
Ni; j � log

�
Pi; j

��
2 ðFÞ

¼
�P

i; j
Ni;j � log

�
Pi; j

��
2

�P
i; j

Ni; j � log
�
Fi; j

��

¼ P
i; j

Ni; j �
�
log

�
Pi; j

�
2 log

�
Fi; j

��

¼ P
i; j

Ni; j � log
�
Pi; j
Fi; j

�

for some constants Fi, j. In practice, we set Fi, j to be the
likelihood at initialization of the EM. We then iterate the
EM until both the change in parameters and the change in
the likelihood are smaller than our chosen threshold, which
in practice we set as 1 3 10250.

It should be noted that any form for tallying read counts
may be used, including the allele profile used in Haubold
et al. (2010), other summaries of data such as number of
derived reads, or genotype calls should they be available;
our choice was motivated by a choice of dimensionality that
is a compromise between simplicity and capturing relevant
information. Our method is highly generalizable to any

Figure 2 Our EM heterozygosity estimates (red) and MlRho estimates
(blue) on the regions of a San individual genome sequenced to 30–45X
and randomly downsampled. At higher coverage, both methods con-
verge to an estimate of 7.45 3 1024. We note that our estimates for
4X and 5X coverage are much more accurate than those of MlRho.
Results for ,4X coverage were not possible to obtain from MlRho.
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choice of count data and could be implemented assuming that
a reasonable starting position for the EM could be proposed,
such that the iterations are likely, although not guaranteed,
to converge to a local maximum corresponding to the geno-
typic states. Furthermore, the simple framework of our
method allows for future directions, such as incorporating
quality scores into the summaries of the data, which may re-
sult in better estimates and also inform the reliability of qual-
ity scores.

Proof of principle 1: Application to simulated data

We generated simulated sequence data and applied our EM
method for estimating heterozygosity to assess the accuracy
of our estimation procedure.

Generating coalescent simulations: We generated 100 rep-
licate data sets of sequence data, using MaCS (Chen et al.
2009). Each replicate data set contains 10 independent
regions of length 100 Mb for a total of 1 GB of sequence,
for (each haploid) one chimpanzee chromosome, seven Afri-
can chromosomes, five European chromosomes, and five East
Asian chromosomes, using demographic parameters fitted by
Gutenkunst et al. (2009). We include a chimpanzee chromo-
some assuming a constant ancestral population size of 50,000
individuals and a split time from humans of 6 MYA, us-
ing the same generation time as humans of 25 years per
generation.

Adding simulated error: We simulate sequence data from
the true genotypes by adding errors to reads. First, for all
variable loci in the target individual, we randomly choose
which allele is on a read and then add errors to each read
(with a high error rate of 0.002) to generate the total
number of derived reads for the individual at the locus from
the total sequencing depth. For each other sequenced
chromosome, we add errors with a lower error rate of
0.0001 (since we assume the panel is composed of higher-

quality genomes) and then add a count for the final simulated
locus in the appropriate hash bin. Finally, for each invariant
locus, we add errors to the target individual’s reads and, at
a lower rate, add errors to the other sequenced chromosomes
and input these counts into the hash bin. With an error rate of
0.001 we add errors to the chimpanzee chromosome, which
inverts the ancestral and derived reads.

Proof of principle 2: Downsampling
high-coverage genomes

To assess the efficacy of our method at lower cover-
ages on real sequence data, we begin by obtaining estimates of
heterozygosity for a San individual from the Human Genome
Diversity Project (HGDP), sequenced to higher coverage, using
Illumina’s Genome Analyzer IIx next-generation sequencing
technology, which we then downsample to varying levels of
low coverage. We use this data set of sequence reads to explore
the ability of our method to perform on low-coverage sequence
data and the lower bound of coverage at which we are able to
obtain accurate estimates of heterozygosity. We compare the
performance of our method to the estimate of u obtained from
MlRho (Haubold et al. 2010).

We also examine the robustness of our method to a
variety of reference panel compositions, examining perfor-
mance for panels from different populations, panels of
different size, and panels including known relatives of the
target individual. We estimate the heterozygosity of one
parent from a HapMap CEU (Utah residents with Northern
and Western European ancestry) trio (NA12892) sequenced
by the 1000 Genomes Project. We compare estimates at 10X
coverage, using a reference panel of (a) FIN, 5 Finnish
individuals; (b) GBR, 5 British individuals from England and
Scotland; (c) LWK, 5 Luhya from Webuye, Kenya; (d)
diverse, 2 FIN, 2 GBR, and 1 LWK individual; and (e)
relateds, the target individual’s trio and a FIN, a GBR, and
an LWK individual. We also examined the effect that chang-
ing the size of the reference panel had on power and the

Figure 3 Estimates of heterozy-
gosity for CEU trio individual
NA12892, using a variety of ref-
erence panel compositions. (A)
Heterozygosity estimates for each
of the reference panels composed
of five individuals from different
populations as described in Proof
of principle 2: Downsampling
high-coverage genomes. (B) Het-
erozygosity estimates using differ-
ent reference panel size (x-axis)
and downsampled to different
coverage (symbol color/shape).
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lower limit of convergence by calculating heterozygosity
across a range of reference panel sizes from 2 to 15 FIN
individuals.

Application to 11 worldwide human genomes

We align sequence data from 11 human genomes from
worldwide populations and an archaic Denisovan genome to
the chimpanzee reference genome to avoid introducing
human-reference population biases. For details on the pop-
ulations, the samples, and the sequencing performed, see
Meyer et al. (2012). We generate a counts matrix for each of
the genomes, using a panel generated by a single read sam-
pled from each of the other 11 genomes.

We include only sites where there is a chimpanzee
reference allele and exclude sites where two or more non-
reference bases are equally present or if there are more than
five reads showing a third (nonvariant and nonreference)
allele. We also exclude CpG sites, as well as sites where any
individual from the panel has no coverage or sites that have
insufficient coverage for the target individual.

To demonstrate the relationship between sequencing
coverage and the true rate of heterozygosity of different
regions, we generate count data for each bin of 5X coverage
ranging between 5X and 50X, where for each bin data set,
we include only sites where the coverage of the individual
falls within the target range. We downsample coverage at
each bin (where possible) to 5X, 10X, and 20X and compare
results stratified by downsampling, as well as by genomic
coverage.

Finally, we produce estimates for the 11 present-day
genomes and the archaic Denisova genome on a fixed set of
sites and compare them to previous estimates for these
samples (Meyer et al. 2012).

Results

Simulation results

We obtain accurate estimates of heterozygosity across
a variety of coverage levels (from 2X and 30X) (see Figure
1). We note a tiny bias of 0.3% (in relative terms) from the
true rate for 5X coverage read data, but with higher cover-
age this bias goes to zero. We note that performance deteri-
orates sharply below 4X, as a result of failure of convergence
of the EM to a maximum corresponding to genotypic states.
At 2X and 3X coverage, the size of the data matrix is not
significantly greater than the number of parameters being
estimated, and the data do not have sufficient information
to allow the EM to consistently converge to an optimum
corresponding to the genotypic states. It is possible to con-
sider multiple initializations to increase the likelihood of con-
verging to a maximum corresponding to genotypic states, but
since the EM is not consistently robust to this choice at 2X and
3X coverage, we do not present these results.

Downsampling results

Figure 2 illustrates that our EM estimation method and
MlRho give consistent estimates of heterozygosity for the
HGDP San individual starting at �10X coverage and higher.
However, at lower coverage (4–10X) our method signifi-
cantly outperforms MlRho, giving a nearly convergent esti-
mate, while mlRho does not.

Reference panel results

We observe consistent heterozygosity estimates indepen-
dent of reference panel size and composition and related-
ness to the target individual, confirming our method’s
independence of reference panel composition (Figure 3).

Figure 4 Estimates of heterozygosity for each of the 11 present-day human genomes and Denisova, where each individual is denoted by a unique color.
Relative coverage is defined as the lower bound of the sequencing bin, divided by the mean sequencing depth for the individual. (A) Heterozygosity
estimates are consistent across downsampling levels. Downsampling to 5X, 10X, and 20X levels is denoted by line type. Each individual is denoted by
line color. (B) All individuals show an increase in estimated heterozygosity at higher (and lower) relative coverage. (C) Effect of removing known regions
with segmental duplications. Estimates of heterozygosity are shown for a sample of five of the individuals. Without filtering, estimates for each bin are
shown with solid lines. After exclusion of regions within known copy-number-variable and segmental duplications, the heterozygosity estimates display
a flatter distribution (dashed lines).

558 K. Bryc, N. Patterson, and D. Reich



We note that there is a small correction of the bias seen
when using lower-coverage data with larger reference pan-
els (Figure 3B), but this effect is slight.

Heterozygosity estimates for 11 present-day
and Denisovan genomes

We present our initial estimates of heterozygosity, down-
sampled to three different depths, for each sequencing
coverage bin (normalized by individual mean sequence
coverage) in Figure 4A. Our estimates of heterozygosity
are consistent and independent of count matrix (i.e., down-
sampling) size, as would be expected from our simulated
downsampling results shown in Figure 2. However, we find
a strong signal that the estimates of heterozygosity are cor-
related to sequencing coverage of the region. We note that
this is not an artifact of the larger amount of data available
at higher coverage, since each bin is calculated after being
downsampled to the same depth. Instead, the U-shaped
curves in Figure 4B indicate that the apparent next-generation
sequencing coverage is dependent on properties of the under-
lying genomic sequence. In particular, we find that regions of
lower coverage and higher coverage (relative to the mean
sequencing depth) show higher heterozygosity.

We witnessed increased heterozygosity at regions of
higher coverage, which we suspected was due at least in
part to artifactual genetic diversity due to cryptic segmental
duplications. To explore this hypothesis, we restricted our
analyses to regions of the genome that have been identified
as unlikely to contain segmental duplications, available
on the Eichler Laboratory website (http://eichlerlab.gs.
washington.edu/database.html). We find that this filter
strongly reduces the effects (Figure 4C), confirming that
unidentified segmental duplications, which result in a net
higher sequencing coverage of the region, result in a high
estimate of heterozygosity for such regions. Removing these
regions with known segmental duplications reduces this ef-
fect at regions with higher sequencing coverage. However,
the increase in heterozygosity at higher coverage still is
present even after this correction (see Figure 4C), suggest-
ing that this filter, while helpful, does not completely solve
the problem.

Using only data that passed the segmental duplication
filter, we obtain estimates for the sequenced genomes on the
same set of regions, restricting to regions with sequencing
coverage between 20X and 40X. Using the EM, we estimate
the total genome-wide fraction of heterozygosity for
each individual, and we also can extract estimates of the
allelic distribution of heterozygous and homozygous
sites (Figure 5). We present the absolute estimates we
obtain in Table 1, as well as the ratio of heterozygosity in
the Denisova genome relative to the other individuals.
We find the highest estimates of heterozygosity for the
San African individual and the next-highest estimates of
heterozygosity for other African individuals from the
Mandenka, Yoruba, Mbuti, and Dinka populations. The
next-highest levels of heterozygosity are in individuals

from European populations (French, Sardinian), fol-
lowed by East Asian populations (Dai, Han). We find
the lowest estimates of heterozygosity in the individuals
from Melanesia (Papuan) and from a Native American
population (Karitiana).

Discussion

We have shown that our heterozygosity estimation method
both performs well in low-coverage simulated sequence data
and provides consistent estimates on real low-coverage data
downsampled from higher coverage. In particular, our
method outperforms other methods on data that have been
sequenced at ,10X coverage and provides reasonable esti-
mates for as low as 4X coverage. Our method does not
assume any relationship between the target individual and
the reference panel individuals, making it useful even in
situations where there are no other sequenced individ-
uals from the same population or when the population
is unknown.

Our estimates for 11 worldwide human genomes and the
archaic Denisovan genome provide important insights into
the distribution of heterozygosity across human populations.
Furthermore, our results show that estimates of heterozy-
gosity are strongly affected by genomic properties such as
copy-number variability, and these properties affect sequenc-
ing coverage. Hence, we show that the heterozygosity is not
independent of sequencing coverage even within one
genome and is elevated in both regions with low coverage
(relative to the mean sequencing depth) and regions with
high coverage. This is an unexpected result if one assumes

Figure 5 Inferred distribution of homozygous ancestral (red), heterozy-
gous (yellow), and homozygous derived (blue) sites for the San HGDP
individual. The y-axis is presented on a log scale, and counts with
expected value ,0.1 have been omitted from the plot.

Estimating Heterozygosity 559

http://eichlerlab.gs.washington.edu/database.html
http://eichlerlab.gs.washington.edu/database.html


a “Lander–Waterman” Poisson distribution of read depth
(Lander and Waterman 1988; Weber and Myers 1997). Fur-
thermore, even after excluding regions with known copy-
number variants, an increase in heterozygosity is still present
at the more extreme levels of sequence coverage, suggesting
that other correlations of sequence diversity with coverage,
or possibly individual-specific segmental duplications, still re-
main. Implications from our results suggest that using the
higher tail of sequencing coverage for population genetic in-
ference may result in a biased set of genomic regions with
selectively higher heterozygosity, possibly due to population
and individual segmental duplications.

Our absolute estimates of heterozygosity are lower than
those reported for these genomes in other articles using
other methods (Meyer et al. 2012); however, the relative
estimates are consistent with those that have been previ-
ously documented. Because the regions of the genome
that pass our filters are likely to be lower in complexity
and substantially biased toward lower diversity due to align-
ment biases, the lower absolute values of heterozygosity are
expected. However, our relative heterozygosity estimates
are consistent with previously documented levels of ge-
netic diversity, with African populations showing the
highest levels of diversity and with decreasing levels
with distance away from Africa (Jakobsson et al. 2008;
Li et al. 2008). Our estimates confirm previous findings
that the archaic Denisovan genome shows substantially
lower levels of heterozygosity than any of the other pres-
ent-day populations, with only a fraction of the rate of
heterozygosity.

Other likelihood methods that study the allele-frequency
spectrum from low-coverage sequence data are not well
suited to our context of a single individual from a different
or an unknown population (Kim et al. 2011; Li 2011). How-
ever, an interesting future avenue would be to explore the
performance of these methods outside their intended scope,
testing for robustness to population substructure among
samples (Kim et al. 2011) or applicability to inferring het-
erozygosity for one individual across the whole genome

rather than for the conditioned site-frequency spectrum (Li
2011).

More generally, we emphasize that absolute heterozy-
gosity is not a well-defined quantity in the analysis of
genomic data, as it strongly depends on the particular filters
that are used to select the regions being analyzed and may
be an implausible concept in highly repetitive regions (such
as centromeres and telomeres) and copy-number-variable
regions. The absolute value of heterozygosity can vary based
on the regions chosen to be examined, but the relative
heterozygosity estimates or ratios among individuals (using
the same regions and filters) are consistent. Hence, in practice,
heterozygosity estimates are most meaningful when viewed as
relative ratios among individuals for the same regions of the
genome and not as absolute values inherent to diploid
genomes.
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