Separation of the largest eigenvalues in eigenanalysis
of genotype data from discrete subpopulations
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Background

e Principal component analysis (PCA) has been a power-
ful and efficient method for analyzing large datasets in
population genetics since its early applications by Cavalli-
Sforza and others.

e PCA of single nucleotide polymorphism genotype data
can be used to illuminate population structure.

e A good estimate for the number of populations, K, is needed

in Bayesian clustering algorithms such as STRUCTURE
(Falush et al. 2003) or ADMIXTURE (Alexander et al.
2009), to infer relationships among individuals.

Table 1: False negative (error) rates of estimates of K, the
number of subpopulations, using our threshold for identify-
Ing significant eigenvalues, across 50 simulated data from
[1] sets under model Split. The simulated dataset is small,
with only 50 individuals and 100 markers, underscoring the
need for larger sample sizes to obtain power.

True K| 2 3 4 5
P(K < K)/0.0 0.14 0.80 0.98

Summary of results

We present a mathematical model, and the corresponding
mathematical analysis, that justifies and quantifies the use
of principal component analysis of biallelic genetic marker
data for a set of individuals to estimate the number of sub-
populations represented in the data.

e The raw unprocessed covariance matrix is more amenable
to mathematical analysis.

e The singular values of such raw data exhibit quantifiable
properties that can be used directly to determine the num-
ber of populations in the data.

e Works in an almost deterministic fashion, at least when
the number of individuals in the study is sufficiently large.

Major result:

We show that for large data sets of individuals from K well-
differentiated subpopulations, with overwhelming probabil-
ity the un-centered sample covariance matrix has K large
eigenvalues.

In contrast to previous work, our results describe behavior
of the eigenvalues of the sample covariance matrix with-
out centering or normalization, taking into account both the
number of individuals and the number of markers.

Proof-of-principle simulations that confirm the validity of our model and results

We demonstrate in two proof-of-principle simulations that
we are able to obtain evidence of population structure when
the number of individuals is large enough. The power to de-
tect substructure relies more on the number of individuals
than on the number of markers.

Simulations for a simple model

We generate simulations using overly simple model which allows us
to compute all mathematical parameters to assess performance of our
method. In this simulation, the site frequency spectra and population
structure are known. Further, we fix the subpopulations to be indepen-
dent. We draw unequal subpopulation sample individuals with propor-
tions ¢; = 1/6, co = 1/3, ¢3 = 1/2. The theoretical population proportion
p-(j) at each independent SNP for each subpopulation was selected
from the same probability density function ¢(z) = 0.5/+/x. We simulate
individual genotypes for the j-th marker of an individual of the r-th sub-
population by choosing independent binomial values (with 2 trials) with
probability of success p,(j).

Simulations using this simplistic model with M/ = 1200 and
N = 25000 give eigenvalues:

(A1, A2, A, Ay, As,...) = (48.2,11.5,5.8,0.27,0.26, . .. )

The simulated eigenvalues match the theoretical predicted
significant eigenvalues of (47.4,11.5,5.7).

The threshold of 0.5 separates clearly the K = 3 largest
eigenvalues, set in boldface, from the bulk.

Simulated genetic data under various demographic sce-
narios

Next we applied our method to simulated substructured datasets

generated by coalescent simulations under various demo-
graphic scenarios from Gao et al. 2011 [1].

As shown in Table 1, In the case of such small sample sizes,
we do not find strong power to correctly estimate A, how-
ever, we have no overestimates of the number of subpopu-
lations K. in any of these sets of simulations.

Application to human population genotype data

Using HapMap 3 genotype data for the true substructure of
the complete set of populations is unknown. We therefore
report the performance of our theoretical analysis on the
Yoruba, of Ibadan, Nigeria (YRI), European Americans from
Utah (CEU), and Han Chinese from Beijing, China (CHB)
that should have clear substructure.

We obtain evidence of three subpopulations as the eigen-
values of matrix X split into two sets: the non-significant,
or small, eigenvalues in Figure 1 that lie below the cutoff of
0.5, and three large eigenvalues A = 102.0, Ao = 14.55, and
A3 = 7.37. The large eigenvalues exceed the cutoff of 0.5 ,
which matches our prediction for these three populations.

Detalls of the model: setup, assumptions, and overview of the proof

Mathematical model setup

In setting up the mathematical model, we follow the notation
as in Patterson et al. 2006 [2]. We consider M unrelated
diploid individuals with /N independent biallelic markers, Iin
a large M x N rectangular array C . The entries C; ; are
the number of variant alleles of individual ¢ at for marker j
that take values 0,1 or 2. The individuals are from K sub-
populations, with M, individuals from subpopulation 7.

Population parameters F;. ; take values between 0 and 1 and
correspond to inbreeding coefficients, or departures from
expected allele frequencies. Conservatively, we write F’ for
the largest value of the inbreeding parameter.

Our results describe the asymptotic behavior of the singular
values of C as N increases. In general, our derivations rely
on describing population parameters such that each locus or
individual is viewed as a random sample from the population
of all loci and individuals.

Assumptions

e We assume that if the population sampling information
were known, namely, that individual 7 is from subpopula-
tion r, the genotype probabilities for marker j, P(C; ;
0,1,2) would be given by the expected allele frequencies
in subpopulation r , where p,(j) is the allele frequency of
marker ;7 in subpopulation 7.

e For any pair of subpopulations labeled by r, s € {1,..., K},

we assume that there are numbers m, s such that

N
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e \We assume that the number of individuals, M, grows propor-
tionally with NV

The hidden parameters enter our mathematical analysis through
a K x K (deterministic) symmetric positive matrix QQ with entries

Qlr,s = Veresmy s, (2)

We analyze C as a random perturbation of a finite-rank ma-
trix The eigenvalues of CC’ which we write in decreasing order
AN > Ny > -+ > Ay, or of the alternative scaled matrix, X
that are larger than the threshold ¢ correspond to population sub-
structure.
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If there are K subpopulations present in the data, then as NV
and M increase without bound (and are subject to certain tech-
nical conditions), we prove that with overwhelming probability
the smallest M — K eigenvalues are smaller than ¢, and the
largest K eigenvalues are much larger than ¢.

Increasing the number of individuals, M, increases the magni-
tude of the significant eigenvalues, and make it possible to re-
solve which eigenvalues correspond to population structure.

Distribution of the non-significant eigenvalues

Under a simple substructure scenario, the histogram distribution
of the small eigenvalues should have a unimodal elliptical shape
similar to the Marchenko-Pastur distribution, easily distinguished
from large eigenvalues corresponding to substructure (Figure 1).

Conclusions about PCA

e Evidence that PCA is a robust technique for learning about
population substructure.

e Contrary to current practice, for inference of substructure,
we recommend applying PCA directly on the genotype
data without centering or renormalization.

e We obtain K large eigenvalues in the presence of K sub-
populations, justified by mathematical theory showing strong
separation between the large eigenvalues corresponding
to population structure and the remaining bulk of the dis-
tribution.

e Largely robust to LD, thinning of markers, and inbreeding.

e Inclusion of cryptic relatives in the dataset can profoundly
influence the distribution of the bulk of the eigenvalues,
making eigenanalysis challenging.
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Figure 1: Expected distribution of the bulk of the eigen-
values, which can be confounded by inclusion of re-
lated individuals.

LEFT: Histogram of the eigenvalues from PCA of the
HapMap CEU, CHB, and YRI unrelated individuals,
excluding the three large eigenvalues (A > 1), which
are omitted to better illustrate the shape of the non-
significant eigenvalues.

RIGHT: The multi-modal histogram of the eigenvalues
for PCA of three populations of HapMap (CEU, YRlI,
and CHB) including trios — 297 parents and their re-
lated 108 offspring. Large eigenvalues are not shown.

Challenges of cryptic relatives

The shape of the histogram of the distribution of eigenval-
ues is affected by relationships between the individuals. In-
cluding related individuals (offspring) in the HapMap PCA
disturbs the unimodal tight distribution, see Figure 1.

Closely related individuals violate our random sampling as-
sumption. These hidden, or “cryptic”, relationships among
iIndividuals affect the applicability of our method for popu-
lation structure by changing the distribution of eigenvalues,
making it difficult to infer the correct cutoff for substructure.
Pruning for LD does not improve the distribution, instead ex-
clusion of related individuals improves the resolution of true
substructure.

Robust to other violations of assumptions

Our assumption that that each marker is independent is vi-
olated by “linkage disequilibrium” (LD). Simulations indicate
that LD does not strongly affect our ability to detect popula-
tion structure, and thinning the data by removing one SNP
from each pair of highly correlated markers (such as via the
LD-pruning implemented in PLINK) is a simple yet robust
technique.

Non-random mating violates stochastic independence of in-
dividuals. However, departures from HWE only slightly re-
duce the power of PCA for detecting population substruc-
ture, and it is possible to compensate inbreeding by increas-
iIng the number of individuals M.
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